domingo, 30 de noviembre de 2008

Kurt Gödel

Wikipedia está ahí cuando la necesitas — ahora ella te necesita.
Mantén Wikipedia: un proyecto sin ánimo de lucro.
Dona ahora »
Mantén Wikipedia: un proyecto sin ánimo de lucro. — Dona ahora

Kurt Gödel

De Wikipedia, la enciclopedia libre

Kurt Gödel

Kurt Gödel

Nacimiento28 de abril de 1906
Brünn (Brno) Imperio Austrohúngaro
Muerte14 de enero de 1978
Princeton, Bandera de los Estados Unidos EEUU
ResidenciaAustria, EEUU
Campo/sMatemáticas
InstitucionesInstituto de Estudios Avanzados de Princeton
Alma máterUniversidad de Viena
Supervisor doctoralHans Hahn
Conocido porTeorema de incompletitud de Gödel
Premios destacadosPremio Albert Einstein (1951)
CónyugeAdele Porkert
El título de este artículo contiene el carácter alemán ö. El nombre también puede escribirse Kurt Goedel

Kurt Gödel ([kuɹtˈgøːdl]) (28 de abril, 1906 Brno (Brünn), Austria-Hungría (ahora República Checa) – 14 de enero, 1978 Princeton, New Jersey) fue un lógico, matemático y filósofo austriaco-estadounidense.

Reconocido como uno de los más importantes lógicos de todos los tiempos, el trabajo de Gödel ha tenido un impacto inmenso en el pensamiento científico y filosófico del siglo XX. Gödel, al igual que otros pensadores como Bertrand Russell, A. N. Whitehead y David Hilbert intentó emplear la lógica y la teoría de conjuntos para comprender los fundamentos de la matemática. A Gödel se le conoce mejor por sus dos teoremas de la incompletitud, publicados en 1931 a los 25 años de edad, un año después de finalizar su doctorado en la Universidad de Viena.

El más célebre de sus teoremas de la incompletitud establece que para todo sistema axiomático recursivo auto-consistente lo suficientemente poderoso como para describir la aritmética de los números naturales (la aritmética de Peano), existen proposiciones verdaderas sobre los naturales que no pueden demostrarse a partir de los axiomas. Para demostrar este teorema desarrolló una técnica denominada ahora como numeración de Gödel, el cual codifica expresiones formales como números naturales.

También demostró que la hipótesis del continuo no puede refutarse desde los axiomas aceptados de la teoría de conjuntos, si dichos axiomas son consistentes. Realizó importantes contribuciones a la teoría de la demostración al esclarecer las conexiones entre la lógica clásica, la lógica intuicionista y la lógica modal.

Contenido

[ocultar]


Vida [editar]



Infancia [editar]

Kurt Friedrich Gödel nació el 28 de abril, en Brno (Brünn), en Moravia Austria-Hungría (ahora República Checa) en una familia étnico-germana acomodada, compuesta por Rudolf August Gödel, hombre de negocios y administrador de una fábrica de textiles, y Marianne Gödel (nacida Handschuh), una mujer educada y culta quien permaneció cercana a Gödel durante toda su vida (tal como puede observarse en la extensa correspondencia entre ambos).[1] Al momento de su nacimiento el pueblo tenía una ligera mayoría de población de habla alemana[2] y este era el idioma de sus padres.[3] Gödel que hablaba muy poco el checo se convirtió automáticamente en checoslovaco a la edad de 12 años tras la caída del imperio austro-húngaro al final de la Primera Guerra Mundial. Posteriormente le contó a su biógrafo John W. Dawson que durante ese tiempo se sentía como un "exilado austríaco en Checoslovaquia" ("ein Österreicher im Exil in der Tschechoslowakei"). Decidió convertirse en ciudadano austríaco a la edad de 23 años. Cuando la Alemania nazi anexó Austria Gödel automáticamente se convirtió en ciudadano alemán a la edad de 32 años. Después de la Segunda Guerra Mundial, a la edad de 42 años, se convirtió en ciudadano americano.

En su familia, al joven Kurt lo llamaban Herr Warum (Sr. Por qué) debido a su insaciable curiosidad. La única excepción a una infancia sin incidentes fue el que a partir de los cuatro años Kurt sufrió quebrantos de salud y fiebres reumáticas, de las cuales se recuperó completamente, pero quedó convencido por el resto de su vida de que su corazón había sufrido un daño permanente.

Asistió a la escuela primaria y secundaria en idioma alemán en Brno de la cual se graduó con honores en 1923 y sobresalió en matemáticas, idiomas y religión. En el transcurso de su adolescencia Kurt estudió, entre otras materias, la Teoría de los colores de Goethe, críticas de Isaac Newton y la obra de Immanuel Kant.



Estudios en Viena [editar]

A la edad de 18 años Kurt se reunió con su hermano mayor Rudolf (nacido en 1902) e ingresó a la Universidad de Viena. Para entonces ya dominaba las matemáticas a nivel universitario y aunque en un principio pretendió estudiar física teórica, también asistió a cursos de filosofía impartidos por Heinrich Gomperz y de matemáticas. Durante este período adoptó ideas del realismo matemático, leyó los Metaphysische Anfangsgründe der Naturwissenschaft (Fundamentos metafísicos de la ciencia natural) de Kant, y aunque él mismo no fue un “positivista lógico” participó en reuniones del Círculo de Viena con Moritz Schlick, Hans Hahn y Rudolf Carnap, siendo estos dos últimos de quienes aprendió lógica. Después estudió también la teoría de los números, y fue el asistir a un seminario dirigido por Schlick, en el cual se estudiaba el libro [[Introducción a la lógica matemática]] de Bertrand Russell, lo que lo motivó a interesarse por la lógica matemática.

El asistir a una conferencia de Hilbert sobre la completud y la consistencia de los sistemas matemáticos podría haber sido lo que decidió el curso de su vida. En 1928 Hilbert y Wilhelm Ackermann publicaron los Grundzüge der theoretischen Logik ([[Principios de lógica teórica]]), una introducción a la lógica de primer orden en la cual se planteaba el problema de la completud: “¿Son suficientes los axiomas de un sistema formal para derivar cada una de las proposiciones verdaderas en todos los modelos del sistema?” Este fue el tema elegido por Gödel para su disertación doctoral. En 1929, a la edad de 23 años, completó su disertación bajo la supervisión de Hans Hahn, en la cual Gödel estableció la completud del cálculo de predicados de primer orden (este resultado se conoce ahora como el teorema de la incompletud de Gödel). El título de Dr. Phil. le fue concedido en 1930 y su tesis, junto a trabajo adicional, fue publicada por la Academia de Ciencias de Viena.[4]



Obra en Viena [editar]

En 1931 Gödel publicó sus célebres teoremas de la incompletud en "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme" ("Sobre proposiciones formalmente indecidibles de Principia Mathematica y sistemas relacionados"). En dicho artículo demostró que para todo sistema axiomático computable que sea lo suficientemente poderoso como para describir la aritmética de los números naturales (e.g. los axiomas de Peano (o ZFC), entonces:

  1. Si el sistema es consistente no puede ser completo. (A esto generalmente se le conoce como el teorema de la incompletud.)
  2. La consistencia de los axiomas no puede demostrarse al interior del sistema.
Estos teoremas finalizaron medio siglo de intentos académicos (comenzando con el trabajo de Frege y culminando en los Principia Mathematica y en el formalismo de Hilbert) por encontrar un conjunto de axiomas suficiente para toda la matemática. El teorema de la incompletud implica también que no toda la matemática es computable.

La idea básica del teorema de la incompletud es más bien simple. Esencialmente Gödel construyó una formula que asegura ser no-demostrable para cierto sistema formal. Si fuera demostrable sería falsa, lo cual contradice el hecho de que en un sistema consistente las proposiciones demostrables son siempre verdaderas. De modo que siempre habrá por lo menos una proposición verdadera pero no demostrable. Esto es, para todo conjunto de axiomas de la aritmética construible por el hombre existe una fórmula la cual se obtiene de la aritmética pero es indemostrable en ese sistema. Sin embargo, para precisar esto Gödel necesitaba resolver varias cuestiones técnicas, tales como proposiciones de codificación y el concepto mismo de demostrabilidad en la teoría de los números naturales. Esto último lo realizó mediante un proceso denominado numeración de Gödel.

En su ensayo de dos páginas "Zum intuitionistischen Aussagenkalkül" (1932) Gödel refutó la “valuabilidad” finita de la lógica intuicionista. En la demostración empleó implicitamente lo que después se conoció como la lógica intermedia de Gödel–Dummett (o Gödel fuzzy logic).

Gödel recibió su habilitación en la Universidad de Viena en 1932, y en 1933 se convirtió en Privatdozent (profesor no remunerado). La ascensión de Hitler en Alemania en 1933 afectó poco a Gödel en Viena, ya que tenía poco interés en la política. Sin embargo, se vió muy afectado por el asesinato de Moritz Schlick (cuyo seminario había despertado su interés por la lógica) a manos de un estudiante perturbado, incidente que resultó en su primer colapso nervioso.



Visitas a los Estados Unidos [editar]

En 1933 Gödel viajó por primera vez a los Estados Unidos donde conoció a Albert Einstein, con quien estrechó lazos de amistad. Presentó una conferencia en la reunión anual de la Sociedad Americana de Matemáticas. En el transcurso de ese año Gödel también desarrolló ideas sobre la computabilidad y la función recursiva al punto que presentó una conferencia sobre dichas funciones y sobre el concepto de verdad. Posteriormente, este trabajo se desarrolló en la teoría de los números, empleando la numeración de Gödel.

En 1934 Gödel presentó una serie de conferencias en el Instituto para Estudios Avanzados (IEA) en Princeton, titulada Sobre las proposiciones indecidibles de los sistemas matemáticos formales. Stephen Kleene, quien acababa de finalizar su doctorado en Princeton, tomó notas de esta conferencia, las cuales fueron publicadas posteriormente.

Gödel visitaría el IEA nuevamente en el otoño de 1935, pero los viajes y el intenso trabajo lo habían extenuado y al año siguiente convaleció producto de una depresión, y no regresó a la docencia sino hasta 1937. Durante ese tiempo se dedicó a la prueba de consistencia del axioma de elección y a la hipótesis del continuo en cuyo trabajo continuó hasta mostrar que estas hipótesis no pueden refutarse desde el sistema común de axiomas de la teoría de conjuntos.

Contrajo matrimonio el 20 de septiembre de 1938 con Adele Nimbursky (nacida Porkert, 1899-1981), a la cual conocía desde hacía 10 años. Los padres de Gödel se oponían a la relación sobre la base de que se trataba de una bailarina divorciada y seis años mayor que él. Nunca tuvieron hijos.

Posteriormente realizó otra visita a los Estados Unidos, donde pasó el otoño de 1938 en el IEA y la primavera de 1939 en la Universidad de Notre Dame. Durante sus vacaciones del IEA, Gödel y su esposa Adele pasaron el verano de 1942 en Blue Hill, Maine. Sin embargo Gödel no estaba meramente vacionando pues tuvo un verano de trabajo muy productivo. John W. Dawson, Jr. conjetura que durante esas vacaciones Gödel, empleando el volumen 15 de su obra todavía sin publicar Arbeitshefte (working notebooks), descubrió una prueba de la independencia del axioma de elección de la teoría finita de tipos, una forma debilitada de la teoría de conjuntos. Hao Wang, amigo cercano de Gödel, apoya dicha conjetura, señalando que los cuadernos de notas de Blue Hill contienen su tratamiento más extenso del problema.



Trabajo en Princeton [editar]

Después del Anschluss en 1938, Austria pasó a formar parte de la Alemania Nazi. Alemania abolió el título de Privatdozent, de modo que Gödel tuvo que concursar a un cargo diferente en el nuevo orden. Sin embargo, sus vínculos anteriores con miembros judíos del Círculo de Viena, especialmente con Hahn, pesaban en su contra. Su situación se precipitó cuando se le encontró apto para el servicio militar, quedando en riesgo de ser llamado a las filas del ejército alemán, razón por la cual emigró hacia los Estados Unidos para asumir un cargo docente en el IEA.

Rápidamente retomó su trabajo en matemáticas y en 1940 publicó su obra Consistencia del axioma de elección y de la hipótesis del continuo generalizada con los axiomas de la teoría de conjuntos, la cual constituye un clásico de la matemática moderna. En dicho trabajo introdujo el universo construible, un modelo de la teoría de conjuntos en el cual los únicos conjuntos que existen son aquellos que pueden construirse a partir de conjuntos más simples. Gödel mostró que tanto el axioma de elección (AC) y la hipótesis del continuo generalizada (HCG) son verdaderas en el universo construible y por lo tanto deben de ser consistentes con los axiomas de Zermelo-Frankel para la teoría de conjuntos (ZF). Posteriormente Paul Cohen construyó un modelo de ZF en el cual AC y HCG son falsos; en conjunto estas demostraciones significan que AC y HCG son independientes de los axiomas de ZF para la teoría de conjuntos.

Hacia el final de los 1940s Gödel demostró la existencia de soluciones paradójicas a las ecuaciones de campo de la relatividad general de Albert Einstein. Estos "universos rotatorios" permitirían viajar en el tiempo y provocaron dudas en Einstein sobre su propia teoría. Sus soluciones se conocen como la métrica de Gödel (o el Universo de Gödel).

Durante sus muchos años en el Instituto, los intereses de Gödel se tornaron hacia la filosofía y la física. Estudió y admiró las obras de Gottfried Leibniz, pero llegó a la conclusión (sin evidencia) de que la mayor parte del trabajo de Leibniz había sido suprimida. En menor medida también estudió a Kant y a Edmund Husserl. Al principio de los 1970s Gödel circuló entre sus amistades una elaboración de la demostración ontológica de Leibniz sobre la existencia de Dios, la cual se conoce ahora como la demostración ontológica de Gödel.

En 1946 Gödel se convirtió en un miembro permanente del IEA. Alrededor de este período dejó de publicar, aunque continuo trabajando. Se convirtió plenamente en profesor del Instituto en 1955 y en profesor emérito en 1976.

En 1951 Gödel fue reconocido (junto a Julian Schwinger) con el primer Premio Albert Einstein, y también se le entregó la National Medal of Science en 1974.



Muerte [editar]

En sus últimos años Gödel sufrió de períodos de inestabilidad y enfermedad mental. Tenía temores obsesivos de ser envenenado, y no comía a menos que su esposa Adele probara la comida antes que él. A finales de 1977 Adele fue hospitalizada durante seis meses y no pudo continuar probando la comida de Gödel. En su ausencia se rehusó a comer, hasta el punto de dejarse morir de hambre. Al momento de su muerte pesaba 65 libras. El certificado de defunción en el Hospital de Princeton, el 14 de enero de 1978, reporta que murió de "desnutrición e inanición causadas por perturbaciones en la personalidad".[5]



Legado y distinciones [editar]

La Kurt Gödel Society, fundada en 1987, fue nombrada en su honor. Es una organización internacional dedicada a la promoción de la investigación en lógica, filosofía y la historia de las matemáticas. Fue nombrado doctor honorario en Literatura por la Universidad Yale en 1951. También recibió un doctorado honorario en Ciencias por la Universidad Harvard en 1952 con una mención en la que le declaró "el descubridor de la verdad matemática más significativa del siglo". Fue elegido como miembro de la Academia Nacional de Ciencias en 1955 y de la Academia Americana de las Artes y Ciencias en 1957. En 1961 ingresó en la Sociedad Filosófica de América y en 1967 fue elegido miembro honorario de la Sociedad Matemática de Londres. Finalmente, en 1975 el presidente Gerald Ford le entregó la Medalla Nacional de las Ciencias.



La amistad de Gödel con Einstein [editar]

Albert Einstein y Gödel entablaron una amistad legendaria, compartida en las caminatas que tomaban juntos en el IEA. La naturaleza de sus conversaciones permaneció en el misterio para los otros miembros del Instituto. El economista Oskar Morgenstern recuerda que hacia el final de su vida Einstein le confió que "su propio trabajo ya no importaba mucho, que llegaba al Instituto únicamente para tener el privilegio de caminar a casa junto a Gödel".[6]

Einstein y Morgenstern asesoraron a Gödel para el examen de su ciudadanía estadounidense, preocupados de que el comportamiento impredecible de su amigo pusiera en riesgo su oportunidad. Cuando se mencionó brevemente el regimen nazi, Gödel le informó al juez que presidía que había descubierto una manera en que una dictadura pudiese instaurarse legalmente en los EE.UU., mediante una contradicción lógica en la Constitución. Ni el juez ni Einstein o Morgenstern, le permitieron a Gödel terminar la elaboración de su pensamiento y la ciudadanía le fue entregada.[7]



Gödel en la cultura popular [editar]

En la comedia romántica de 1994 I.Q. dirigida por Fred Schepisi, se dramatizó a Gödel como un personaje secundario encarnado por el actor Lou Jacobi; en el film aparece sin su paranoia y disfrutando plenamente de su jubilación. En 2007 estudiantes de la Nederlandse Filmacademie (Dutch) (Dutch Film Academy) se graduaron con un corto de 25 minutos, dirigido por Igor Kramer con el actor austriaco Robert Stuc en el papel principal; un Gödel retirado se percata de que sus alrededores son un set de filmación, lo cual alimenta su paranoia.



Publicaciones importantes [editar]

En alemán:

  • 1931, "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme," Monatshefte für Mathematik und Physik 38: 173-98.
  • 1932, "Zum intuitionistischen Aussagenkalkül", Anzeiger Akademie der Wissenschaften Wien 69: 65–66.
En inglés:

  • 1940. The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory. Princeton University Press.
  • 1947. "What is Cantor's continuum problem?" The American Mathematical Monthly 54: 515-25. Revised version in Paul Benacerraf and Hilary Putnam, eds., 1984 (1964). Philosophy of Mathematics: Selected Readings. Cambridge Univ. Press: 470-85.
En traducción al inglés:

  • Kurt Godel, 1992. On Formally Undecidable Propositions Of Principia Mathematica And Related Systems, tr. B. Meltzer, with a comprehensive introduction by Richard Braithwaite. Dover reprint of the 1962 Basic Books edition.
  • Kurt Godel, 2000. http://www.research.ibm.com/people/h/hirzel/papers/canon00-goedel.pdf On Formally Undecidable Propositions Of Principia Mathematica And Related Systems, tr. Martin Hirzel
  • Jean van Heijenoort, 1967. A Source Book in Mathematical Logic, 1879-1931. Harvard Univ. Press.
    • 1930. "The completeness of the axioms of the functional calculus of logic," 582-91.
    • 1930. "Some metamathematical results on completeness and consistency," 595-96. Abstract to (1931).
    • 1931. "On formally undecidable propositions of Principia Mathematica and related systems," 596-616.
    • 1931a. "On completeness and consistency," 616-17.


Referencias [editar]

Fuentes primarias:

  • Gödel, Kurt 1931 Sobre proposiciones formalmente indecidibles de los Principia mathematica y sistemas afines. Valencia: Teorema, 1980 y 2.ª edición: 1981 ISBN 84-370-0168-4 -
  • Gödel, Kurt 1931 Sobre proposiciones formalmente indecidibles de los Principia mathematica y sistemas afines. Oviedo: krk ediciones[1], 2006. ISBN 978-84-96476-95-0
  • Gödel, Kurt 1981: Obras completas. Madrid: Alianza Editorial, ISBN 84-206-2286-9
  • Gödel, Kurt 1994: Ensayos inéditos. Francisco Rodríguez Consuegra, editor. Biblioteca Mondadori. ISBN 84-397-1966-3
Fuentes secundarias:



Notas [editar]

  1. Dawson 1997, pp. 3-4
  2. 1911 Encyclopædia Britannica/Brünn. Consultado el 2008-03-13.
  3. Dawson 1997, p. 12
  4. Gödel, Kurt, 1986, Collected Works. I: Publications 1929–1936. S. Feferman, S. Kleene, G. Moore, R. Solovay, and J. van Heijenoort (eds.), Oxford: Oxford University Press.
  5. Toates, Frederick, Olga Coschug Toates (2002). Obsessive Compulsive Disorder: Practical Tried-and-Tested Strategies to Overcome OCD. Class Publishing, 221.
  6. Goldstein, Rebecca (2005). Incompleteness: The Proof and Paradox of Kurt Godel. W. W. Norton, 33.
  7. Holt, Jim (February 1998). "The Loophole: A logician challenges the Constitution". Lingua Franca. Consultado el 17 de noviembre de 2007.


Véase también [editar]

No hay comentarios: